

312 Directors Drive Knoxville, TN 37923 865.690.3211 Fax 865.690.3626

July 17, 2006

SHAW-MC-CK10-1005 Project No. 796887

Mr. Lee Coker U.S. Army Corps of Engineers, Mobile District Attn: EN-GE/Lee Coker 109 St. Joseph Street Mobile, Alabama 36602

Contract: DACA21-96-D-0018, Task Order CK10

Fort McClellan, Alabama

Subject: Final Site Investigation Report and Decision Document for AWWSB

Tank Sites Near Baby Bains Gap Road Ranges

Dear Mr. Coker:

The enclosed letter report and decision document summarize the site investigation (SI) conducted by Shaw at two future Anniston Water Works and Sewer Board (AWWSB) tank sites located near the Baby Bains Gap Road Ranges at Fort McClellan, Alabama. The investigation was conducted to facilitate transfer of these properties from the Army to the Anniston-Calhoun County Fort McClellan Development Joint Powers Authority.

This SI report was previously issued in October 2005; however, minor changes were made to the document in response to ADEM comments received on February 6, 2006. EPA concurred with the previous version of the report. Shaw's response to ADEM comments and EPA's concurrence letter are included in the SI report. Please file these documents in your records and provide a letter of concurrence.

At your request, I have distributed copies of this submittal as indicated below. If you have questions, or need further information, please contact me at (865) 694-7361.

Sincerely,

Stephen G. Moran, P.G.

Project Manager

Attachments

Distribution: Lisa Holstein, FTMC (6 copies; 2 CDs)

Brandi Little, ADEM (2 copies; 1 CD)

Doyle Brittain, EPA Region 4 (1 copy; 1 CD)

Miki Schneider, JPA (1 copy)

Michelle Beekman, Matrix Environmental (1 copy)

1.0 Introduction _____

The Baby Bains Gap Road (BBGR) Ranges are comprised of eight sites that lie nearly adjacent to each other in the central section of the Fort McClellan (FTMC) Main Post: Range 20, Range 25, Range 28, Former Range 25 East, Range 23, Range 26, the Ranges South of Range 25, and Range 18. The Anniston Water Works and Sewer Board (AWWSB) tank sites (the Snap Lane Tank Site and the Bains Gap Road Tank Site) are located adjacent to former Range 23 and former Range 25, respectively (Figure 1). Range 23 and Range 25 were small-arms ranges that were previously investigated by Shaw during a remedial investigation (RI) (Shaw Environmental, Inc. [Shaw], 2004). However, the tank sites are located outside the RI area of investigation and no samples were collected during the RI. Therefore, investigation of these areas was required prior to property transfer.

Based on the results of the RI, the primary environmental concern at the BBGR Ranges is the prevalence of lead and copper contamination in surface soil. The source of contamination is bullets and bullet fragments from weapons training.

2.0 Purpose and Scope

The purpose of this investigation was to determine the presence or absence of lead- and copper-contaminated soils within the two AWWSB tank site boundaries. Prior to performing the field work, a site-specific work plan was prepared detailing the field activities to be performed, including x-ray fluorescence (XRF) survey and confirmation soil sampling and analysis (Shaw, 2005). The work plan, which consisted of a sampling and analysis plan (SAP), a safety and health plan, and an unexploded ordnance (UXO) safety plan, was used in conjunction with FTMC installation-wide work plan (IT Corporation [IT], 2002a; 1998), and the SAP (IT, 2002b; 2000a).

3.0 Site Descriptions and History _____

Range 23. Range 23 was used from 1951 until Base closure. Weapons fired at this range included the M-16 automatic rifle and M-16 with tracer. The *Environmental Baseline Survey* (EBS) reports evidence of artillery ordnance impact at Range 23, as Base personnel have found shell fragments and an unexploded mortar round in the area (Environmental Science and Engineering, Inc. [ESE], 1998). According to the *Archives Search Report* (ASR), Range 23

(OA-41) was originally a pistol range and later became a rifle and machine gun range, with multiple orientations and layouts used during the period between World War I and World War II (USACE, 2001). Further, the ASR reports that a part of this area was used in Combat Range #1 (OA-43).

The AWWSB tank site is located along Snap Lane, adjacent to the southwest corner of the Range 23 RI study area (Figure 1). The tank site covers approximately 5.8 acres.

Range 25. Range 25 is one of the oldest and most used ranges at FTMC and may have been in use as early as the 1920s. Long-time FTMC personnel believe that Range 25 was constructed as a 600-yard known-distance range for training using M-1903 Springfield rifles (.30 caliber) and M-1 Garand rifles (.30 caliber). This range was also reportedly used as a machine gun range. FTMC Range Control records indicate that the range was used for M-14 training. The EBS states that weapons fired at this range consisted of various small arms, including the M-14, M-16, M-1, and M-60 (with tracers) rifles (ESE, 1998). The firing direction was to the northeast.

The AWWSB tank site is located along Bains Gap Road, adjacent to the eastern boundary of the Range 25 RI study area (Figure 1). The tank site covers approximately 6.1 acres.

4.0 Field Investigation Activities

This section describes the field activities performed during the investigation of the AWWSB tank sites, including UXO avoidance, site surveying and establishment of sampling grids, XRF soil screening, and confirmation sampling and analysis.

UXO Avoidance. Prior to performing any intrusive field work, UXO avoidance was performed within the areas to be investigated following methodology outlined in the UXO Safety Plan and the SAP. Shaw UXO personnel used a hand-held magnetometer to perform a surface sweep of the areas of investigation prior to site access. After the sites were cleared for access, sample locations were monitored by UXO personnel following procedures outlined in the SAP.

Site Surveying and Establishment of Sampling Grids. Prior to sampling, a registered land surveyor surveyed the boundaries of the AWWSB tank sites. Sampling grids, consisting of 100-foot grid squares, were established over the entire area of the AWWSB tank sites, as shown on Figures 2 and 3. The intersecting points of the grid, or nodes, were marked using wooden stakes and then surveyed. The grid nodes were assigned unique identifiers based on the distance

(in feet) and direction from a reference node (e.g., NW0, SW0) used as the starting point. For example, the location "N100, W200" refers to a point 100 feet north of and 200 feet west of the starting point. The grid node designations and survey coordinates are provided in Table 1.

XRF Sampling and Analysis. During the initial phase of the investigation, metals analysis was performed at the grid node locations using a portable XRF instrument. The XRF samples were analyzed for lead and copper. At the Bains Gap Road Tank Site, 34 XRF samples were analyzed (Figure 2). At the Snap Lane Tank Site, 30 XRF samples were analyzed (Figure 3). The XRF soil samples were assigned unique sample identifiers based on the grid system.

A Niton 733 portable XRF instrument was used to perform the analyses, following procedures described in the FTMC SAP. The instrument was calibrated daily using a blank and certified standard reference materials of known concentrations. The XRF calibration forms are included in Appendix A.

At each grid node, a sample was collected from the upper 3 inches of soil using a steel sampling trowel and placed in a disposable aluminum foil pan. Prior to analysis, any rocks, vegetative matter, bullets, shot, or bullet fragments were removed and the sample was homogenized. Once homogenized, the soil was analyzed directly in the pan using the XRF. Data from the analysis were automatically stored in the instrument data logger, downloaded to a laptop computer at the end of each day, and transferred into an $\operatorname{Excel}^{\mathsf{TM}}$ spreadsheet for subsequent data management and reporting. In addition, the results were recorded by the analyst on the XRF Summary of Results form (Appendix A).

Off-Site Confirmation Analysis. Seven of the 64 XRF-analyzed samples (11 percent) were sent to EMAX Laboratories, Inc. (EMAX) for confirmation metals analysis using EPA Method 6010B (Table 2). Prior to shipment to the off-site laboratory, the confirmation samples were prepared by heating at 120 degrees Celsius for approximately 4 hours or until dry, crushing with a decontaminated ceramic mortar and pestle, and passing through a standard #10 sieve (2 millimeter pore size). The prepared soil was then analyzed using XRF before being placed in a glass sample container, appropriately labeled, and sealed.

Sample Documentation, Custody, and Tracking. Sample documentation, custody, and tracking followed the procedures described in the FTMC SAP. Collection of the XRF field samples was documented on the sampling forms (Appendix A). Sample custody was maintained

at all times by the XRF analyst prior to shipment to EMAX. The sample collection logs and chain-of-custody records for the confirmation samples are included in Appendix B.

Data Management and Validation. The confirmation sample data were validated in accordance with EPA National Functional Guidelines by Level III criteria. Selected results were rejected or otherwise qualified based on the implementation of accepted data validation procedures and practices. The validation-assigned qualifiers were added to the ShawView™ database for tracking and reporting. A summary of validated analytical data is provided in Appendix C.

5.0 Summary of Analytical Results _____

The XRF and confirmation sample results are summarized in Tables 3 and 4, respectively. Detectable lead concentrations using XRF ranged from 15 to 65.3 milligrams per kilograms (mg/kg); all XRF results for copper were below instrument detection limits (Table 3). As shown in Table 4, the XRF results showed excellent correlation with the confirmation results. Calculated relative-percent differences for lead between the prepared XRF samples and the confirmation samples were less than 15 percent, except at one location (Snap [N100, W200]). At this location, the laboratory result (84.5 mg/kg) was higher than either the field XRF result (29.1 mg/kg) or the prepared XRF sample result (19 mg/kg). This difference is attributable to the heterogeneity of the soil matrix and variations in the sensitivities of the analytical methods.

To evaluate the presence or absence of contamination, the analytical results were compared to human health site-specific screening levels (SSSL) and ecological screening values (ESV) for FTMC (IT, 2000b). The SSSLs and ESVs were developed as part of human health and ecological risk evaluations associated with investigations performed under the Base Realignment and Closure (BRAC) Environmental Restoration Program at FTMC. Additionally, metals concentrations exceeding SSSLs and ESVs were compared to background screening values (Science Applications International Corporation, 1998) to determine if the metals concentrations are within naturally occurring background levels.

Bains Gap Road Tank Site. All XRF and confirmation sample results for copper and lead were well below residential SSSLs (313 mg/kg and 400 mg/kg, respectively) and industrial SSSLs (2,040 mg/kg and 880 mg/kg, respectively). The lead results at two locations marginally exceeded the ESV (50 mg/kg) and also exceeded the background value (40 mg/kg):

Sample Location	XRF Lead Result (mg/kg)	Lab Lead Result (mg/kg)
NW800, SW300	57.2	82.6
NW200, SW200	41.5	59.7

All XRF results for copper were below instrument detection limits, although the detection limits (37 to 65 mg/kg) were typically above the ESV (40 mg/kg) and background value (12.7 mg/kg) for copper. However, all confirmation sample results for copper were below the ESV and background (Table 4).

Snap Lane Tank Site. All XRF and confirmation sample results for copper and lead were well below residential SSSLs (313 mg/kg and 400 mg/kg, respectively) and industrial SSSLs (2,040 mg/kg and 880 mg/kg, respectively). The lead results at three locations marginally exceeded the ESV (50 mg/kg) and also exceeded the background value (40 mg/kg):

Sample Location	XRF Lead Result (mg/kg)	Lab Lead Result (mg/kg)
N500, W300	65.3	81.8
N200, W300	55	NA
N300, W100	51.6	NA

NA - Not available; confirmation sample not collected at this location.

All XRF results for copper were below instrument detection limits (44 to 63.6 mg/kg), although the detection limits were typically above the ESV (40 mg/kg) and background value (12.7 mg/kg) for copper. However, all confirmation sample results for copper were below the ESV and background (Table 4).

6.0 Conclusions _____

Based on the XRF and confirmation sample results, historical range activities at the BBGR Ranges 23 and 25 have not adversely impacted soil at the AWWSB tank sites. Therefore, Shaw believes that these sites are suitable for property transfer without restrictions regarding hazardous substances regulated under the Comprehensive Environmental Restoration, Compensation, and Liability Act.

7.0 References

Environmental Science and Engineering, Inc. (ESE), 1998, *Final Environmental Baseline Survey, Fort McClellan, Alabama*, prepared for the U.S. Army Environmental Center, Aberdeen Proving Ground, Maryland, January.

IT Corporation, 2002a, *Draft Installation-Wide Work Plan, Fort McClellan, Calhoun County, Alabama*, Revision 3, February.

IT Corporation, 2002b, *Draft Installation-Wide Sampling and Analysis Plan, Fort McClellan, Calhoun County, Alabama*, Revision 3, February.

IT Corporation, 2000a, Final Installation-Wide Sampling and Analysis Plan, Fort McClellan, Calhoun County, Alabama, March.

IT Corporation (IT), 2000b, Final Human Health and Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama, July.

IT Corporation, 1998, *Final Installation-Wide Work Plan, Fort McClellan, Calhoun County, Alabama*, prepared for the U.S. Army Corps of Engineers, Mobile District, August.

Science Applications International Corporation, 1998, *Final Background Metals Survey Report, Fort McClellan, Alabama*, July.

Shaw Environmental, Inc. (Shaw), 2005, Letter Work Plan for Investigation of AWWSB Tank Sites Near BBGR Ranges, July.

Shaw Environmental, Inc. (Shaw), 2004, *Draft Remedial Investigation Report, Baby Bains Gap Road Ranges, Fort McClellan, Calhoun County, Alabama*, August.

U.S. Army Corps of Engineers (USACE), 2001, Archives Search Report, Maps, Fort McClellan, Anniston, Alabama, Revision 1, September.

TABLES

XRF Sample Locations and Survey Coordinates
AWWSB Tank Sites at BBGR Ranges
Fort McClellan, Alabama

Table 1

Bains Gap	Road Tank Site - 34	Locations
Grid Node	Northing	Easting
NW100,SW200	1167468.21	677766.68
NW100,SW300	1167396.34	677697.23
NW200,SW100	1167609.71	677764.07
NW200,SW200	1167537.66	677694.63
NW200,SW300	1167465.61	677625.36
NW200,SW400	1167393.73	677556.09
NW300,SW100	1167679.15	677692.20
NW300,SW200	1167607.28	677622.76
NW300,SW300	1167535.23	677553.31
NW300,SW400	1167463.18	677484.04
NW400,SW100	1167748.59	677620.15
NW400,SW200	1167676.37	677550.71
NW400,SW300	1167604.32	677481.09
NW400,SW400	1167532.45	677411.82
NW500,SW100	1167817.87	677548.10
NW500,SW200	1167745.99	677478.66
NW500,SW300	1167673.94	677409.21
NW500,SW400	1167602.07	677339.94
NW600,SW100	1167887.48	677476.05
NW600,SW200	1167815.43	677406.78
NW600,SW300	1167743.39	677337.16
NW600,SW400	1167671.34	677267.89
NW700,SW100	1167956.75	677404.01
NW700,SW200	1167884.71	677334.56
NW700,SW300	1167812.83	677265.29
NW700,SW400	1167740.78	677195.85
NW800,SW100	1168026.03	677331.96
NW800,SW200	1167954.15	677262.69
NW800,SW300	1167882.10	677193.41
NW800,SW400	1167810.05	677123.80
NW900,SW100	1168095.47	677260.08
NW900,SW200	1168023.42	677190.81
NW900,SW300	1167951.55	677121.37
NW900,SW400	1167879.32	677051.92

Snap L	ane Tank Site - 30 Lo	ocations
Grid Node	Northing	Easting
N0,W100	1163863.80	675670.42
N100,W100	1163959.11	675639.69
N100,W200	1163928.38	675544.90
N200,W100	1164054.42	675609.13
N200,W200	1164023.52	675514.00
N200,W300	1163992.79	675418.51
N300,W100	1164149.39	675578.41
N300,W200	1164118.83	675483.27
N300,W300	1164087.93	675388.13
N300,W400	1164057.37	675292.82
N400,W100	1164244.70	675547.68
N400,W200	1164214.14	675452.54
N400,W300	1164183.24	675357.22
N400,W400	1164152.69	675262.09
N500,W100	1164339.84	675517.12
N500,W200	1164308.94	675421.98
N500,W300	1164278.55	675326.67
N500,W400	1164247.65	675231.36
N600,W100	1164434.80	675486.39
N600,W200	1164404.42	675391.08
N600,W300	1164373.52	675295.94
N600,W400	1164342.96	675200.63
N700,W100	1164530.12	675455.49
N700,W200	1164499.39	675360.52
N700,W300	1164468.83	675265.21
N700,W400	1164438.10	675169.90
N800,W100	1164625.43	675424.76
N800,W200	1164594.70	675329.79
N800,W300	1164563.80	675234.66
N800,W400	1164533.07	675139.34

Table 2

Confirmation Soil Samples AWWSB Tank Sites at BBGR Ranges Fort McClellan, Alabama

		QA/0	QC Samples	<u> </u>
		Field		Analytical
Sample Designation ^a	Sample No.	Duplicates	MS/MSD	Parameter
BG(NW800,SW300)-SS-SU0001-XRF	SU0001			TAL Metals
BG(NW200,SW200)-SS-SU0002-XRF	SU0002			TAL Metals
BG(NW600,SW400)-SS-SU0003-XRF	SU0003			TAL Metals
BG(NW300,SW400)-SS-SU0004-XRF	SU0004		BG(NW300,SW400)-SS-SU0004-MS/MSD	TAL Metals
Snap(N500, W300)-SS-SU0005-XRF	SU0005	Snap(N500, W300)-SS-SU0006-FD		TAL Metals
Snap(N100, W200)-SS-SU0007-XRF	SU0007			TAL Metals
Snap(N800, W100)-SS-SU0008-XRF	SU0008			TAL Metals

^a Samples collected from upper 3 inches of soil at the grid node locations indicated in parentheses.

BG - Bains Gap Road Tank Site.

FD - Field duplicate.

MS/MSD - Matrix spike/matrix spike duplicate.

QA/QC - Quality assurance/quality control.

Snap - Snap Lane Tank Site.

SS - Surface soil.

TAL - Target analyte list. Samples analyzed using EPA Method 6010B.

Table 3

XRF Results AWWSB Tank Sites at BBGR Ranges Fort McClellan, Alabama

Bains	Gap Road Tank	Site - 34 Locatio	ns
		XRF Resu	ılt (mg/kg)
Grid Node	Sample Date	Lead	Copper
NW100,SW200	17-Aug-05	32.7	<lod (55)<="" td=""></lod>
NW100,SW300	15-Aug-05	<lod (16)<="" td=""><td><lod (60)<="" td=""></lod></td></lod>	<lod (60)<="" td=""></lod>
NW200,SW100	17-Aug-05	49.9	<lod (47)<="" td=""></lod>
NW200,SW200	17-Aug-05	41.5	<lod (45)<="" td=""></lod>
NW200,SW300	15-Aug-05	<lod (15)<="" td=""><td><lod (53)<="" td=""></lod></td></lod>	<lod (53)<="" td=""></lod>
NW200,SW400	15-Aug-05	16.4	<lod (46)<="" td=""></lod>
NW300,SW100	17-Aug-05	36.9	<lod (45)<="" td=""></lod>
NW300,SW200	17-Aug-05	30.4	<lod (49)<="" td=""></lod>
NW300,SW300	15-Aug-05	28.8	<lod (48)<="" td=""></lod>
NW300,SW400	15-Aug-05	14.8	<lod (45)<="" td=""></lod>
NW400,SW100	17-Aug-05	24.3	<lod (48)<="" td=""></lod>
NW400,SW200	17-Aug-05	25.7	<lod (56)<="" td=""></lod>
NW400,SW300	15-Aug-05	22.8	<lod (53)<="" td=""></lod>
NW400,SW400	15-Aug-05	33.1	<lod (63)<="" td=""></lod>
NW500,SW100	17-Aug-05	20.6	<lod (51)<="" td=""></lod>
NW500,SW200	17-Aug-05	15	<lod (46)<="" td=""></lod>
NW500,SW300	15-Aug-05	<lod (16<="" td=""><td><lod (65)<="" td=""></lod></td></lod>	<lod (65)<="" td=""></lod>
NW500,SW400	15-Aug-05	18.1	<lod (45)<="" td=""></lod>
NW600,SW100	16-Aug-05	15.1	<lod (37)<="" td=""></lod>
NW600,SW200	16-Aug-05	33.3	<lod (57)<="" td=""></lod>
NW600,SW300	15-Aug-05	<lod (13)<="" td=""><td><lod (53)<="" td=""></lod></td></lod>	<lod (53)<="" td=""></lod>
NW600,SW400	15-Aug-05	24.7	<lod (50)<="" td=""></lod>
NW700,SW100	16-Aug-05	41.9	<lod (43)<="" td=""></lod>
NW700,SW200	16-Aug-05	<lod (16)<="" td=""><td><lod (62)<="" td=""></lod></td></lod>	<lod (62)<="" td=""></lod>
NW700,SW300	15-Aug-05	<lod (15)<="" td=""><td><lod (52)<="" td=""></lod></td></lod>	<lod (52)<="" td=""></lod>
NW700,SW400	15-Aug-05	<lod (13)<="" td=""><td><lod (46)<="" td=""></lod></td></lod>	<lod (46)<="" td=""></lod>
NW800,SW100	16-Aug-05	<lod (15)<="" td=""><td><lod (54)<="" td=""></lod></td></lod>	<lod (54)<="" td=""></lod>
NW800,SW200	16-Aug-05	45.6	<lod (48)<="" td=""></lod>
NW800,SW300	16-Aug-05	57.2	<lod (49)<="" td=""></lod>
NW800,SW400	15-Aug-05	27.1	<lod (43)<="" td=""></lod>
NW900,SW100	16-Aug-05	42.6	<lod (50)<="" td=""></lod>
NW900,SW200	16-Aug-05	26.5	<lod (44)<="" td=""></lod>
NW900,SW300	16-Aug-05	34.8	<lod (50)<="" td=""></lod>
NW900,SW400	15-Aug-05	29.6	<lod (51)<="" td=""></lod>

Sn	ap Lane Tank Si	te - 30 Locations	
		XRF Resu	ılt (mg/kg)
Grid Node	Sample Date	Lead	Copper
N0,W100	11-Aug-05	20.6	<lod (63)<="" td=""></lod>
N100,W100	11-Aug-05	24.9	<lod (53)<="" td=""></lod>
N100,W200	11-Aug-05	29.1	<lod (52)<="" td=""></lod>
N200,W100	11-Aug-05	19.5	<lod (62)<="" td=""></lod>
N200,W200	11-Aug-05	26.1	<lod (56)<="" td=""></lod>
N200,W300	11-Aug-05	55	<lod (61)<="" td=""></lod>
N300,W100	11-Aug-05	51.6	<lod (64)<="" td=""></lod>
N300,W200	11-Aug-05	32.6	<lod (54)<="" td=""></lod>
N300,W300	11-Aug-05	25.4	<lod (50)<="" td=""></lod>
N300,W400	11-Aug-05	32.6	<lod (54)<="" td=""></lod>
N400,W100	8-Aug-05	27.4	<lod (44)<="" td=""></lod>
N400,W200	8-Aug-05	23.6	<lod (59)<="" td=""></lod>
N400,W300	8-Aug-05	38.9	<lod (49)<="" td=""></lod>
N400,W400	8-Aug-05	26.6	<lod (57)<="" td=""></lod>
N500,W100	8-Aug-05	27.4	<lod (44)<="" td=""></lod>
N500,W200	8-Aug-05	25.7	<lod (53)<="" td=""></lod>
N500,W300	8-Aug-05	65.3	<lod (53)<="" th=""></lod>
N500,W400	8-Aug-05	19.4	<lod (54)<="" td=""></lod>
N600,W100	8-Aug-05	24.2	<lod (56)<="" td=""></lod>
N600,W200	8-Aug-05	<lod (14)<="" td=""><td><lod (47)<="" td=""></lod></td></lod>	<lod (47)<="" td=""></lod>
N600,W300	8-Aug-05	32.9	<lod (51)<="" td=""></lod>
N600,W400	8-Aug-05	15.9	<lod (49)<="" td=""></lod>
N700,W100	8-Aug-05	<lod (18)<="" td=""><td><lod (63)<="" td=""></lod></td></lod>	<lod (63)<="" td=""></lod>
N700,W200	8-Aug-05	<lod (15)<="" td=""><td><lod (56)<="" td=""></lod></td></lod>	<lod (56)<="" td=""></lod>
N700,W300	8-Aug-05	20.9	<lod (46)<="" td=""></lod>
N700,W400	8-Aug-05	23.8	<lod (56)<="" td=""></lod>
N800,W100	8-Aug-05	15.6	<lod (56)<="" td=""></lod>
N800,W200	8-Aug-05	27.9	<lod (58)<="" td=""></lod>
N800,W300	8-Aug-05	17.6	<lod (48)<="" td=""></lod>
N800,W400	8-Aug-05	<lod (14)<="" td=""><td><lod (51)<="" td=""></lod></td></lod>	<lod (51)<="" td=""></lod>

Bold entries are sample locations selected for offsite confirmation analysis.

mg/kg - Milligrams per kilogram.

<LOD - Less than the limit of detection listed in parentheses.

XRF - X-ray fluoresence.

Table 4

Confirmation Sample Results for Lead and Copper AWWSB Tank Sites Near BBGR Ranges Fort McClellan, Alabama

Sample	Sample	Lead	Concentration (n	ng/kg)	Copper	Concentration (mg/kg)
Location	Number	XRF (Field) ^a	XRF (Prep) ^b	EMAX ^c	XRF (Field) ^a	XRF (Prep) ^b	EMAX ^c
BG(NW800,SW300)	SU0001	57.2	77.2	82.6	<49	<47	10.2
BG(NW200,SW200)	SU0002	41.5	54.3	59.7	<45	<49	10.9
BG(NW600,SW400)	SU0003	24.7	33.9	36.5	<50	<49	8.3
BG(NW300,SW400)	SU0004	14.8	21.8	24.8	<45	<47	5.1
Snap(N500, W300)	SU0005	65.3	71.3	81.8	<53.4	<48	7.3
Snap(N100, W200)	SU0007	29.1	19.0	24.2	<52	<49	6.6
Snap(N800, W100)	SU0008	15.6	<15	22.6	<57	<55	8.5

^a XRF (Field) - surface soil sample was collected and analyzed directly in the field using XRF.

BG - Bains Gap Road Tank Site.

mg/kg - milligrams per kilogram.

Snap - Snap Lane Tank Site.

^b XRF (Prep) - sample was prepared by drying, crushing, and sieving prior to XRF analysis.

^c EMAX - EMAX Laboratories, Inc. Prepared sample analyzed for TAL metals using EPA Method 6010B.

FIGURES

Figure 2 **XRF Grid Sample Locations Bains Gap Road Tank Site** Fort McClellan, Alabama Legend RI Study Area AWWSB Tank Site Sample Grid XRF Sample Location 100 100 Feet NAD83 State Plane Coordinates HAH Shaw™ Shaw Environmental, Inc.

Contract No. DACA21-96-D-0018

Figure 3

XRF Grid Sample Locations Snap Lane Tank Site

Fort McClellan, Alabama

NAD83 State Plane Coordinates

100

100 Feet

Contract No. DACA21-96-D-0018

APPENDIX A XRF RESULTS AND CALIBRATION FORMS

Location ID	Samplin	g Data		Prep		XR	RF Data			C	onc (ppr	n)	Split to		Other
Sample ID	Date	Time	Pan	Lab	Frag?	Read No.	Count (sec)	Pb	Std	Cu	Std	Other Metals	EMAX		nments
Bains Gap Road Tank Si	te														
NW900,5W400	8-15	1045	×		g	#7	142	29.6	LIO		LS1				
NW 800,52400	8-15	1100	×		ع	#8	121		29-7	-	43				
NW\$00,50400	8-15	1115	×		٥ 2	49	127	<13			446				
NW 600 SW 400	8-15	1130	×		20	*10	121	24.7	工川		(50				
มพ 500 SW400	P-15	1150	X		2	#11	121	18.1	+8.9		245				
NW400, SW400	8-15	1355	×		ので	#12	130	33. \	43		463				
Copuz, cosus	8-15	1410	Х		N	牛/3	121	14.8	±8.9		445				
NW 200, SW 400	8-15	1420	X		<u>ه</u>	本川	121	16.4	±9.2		446				
pw 200, 5w 300	8-15	1450	X		3	* 16	12	415			<53				-
NO100 20300	8-15	1435	x		ン。	415	128	416			460				
1200 miles	8-15	1505	X		ş	*17	121	Z8.8	t 9.9		C48				
0056C, 0076U	8-15	1520	×		2	# 18	121	22.8			453			5ANO /	OPEN AMEN
NW500, SW300	8-15	1535	×		w	#19	122	416			465			SAND	1
nnroo' 201300		1555	×		2	#20	121	413			453			SAND	1
NW 700, SW 300	8-15	1405	Х		~	#21	121	< 15			(52			_s 4mp	+
					_										
										 					
															-
															· · · · · · · · · · · · · · · · · · ·

Location ID	Samplin	g Data		Prep	12.	XR	F Data			С	onc (pp	m)	Split to	Other
Grid Node	Date	Time	Pan	Lab	Frag?	Read No.	Count (sec)	Pb	Std	Cu	Std	Other Metals	EMAX	Comments
Bains Gap Road Tank S	ite													
NW 800, 5W100	8-16	0905	X		20	#6	122	<15			454			
NW900, SW100		0920	Х		20	#7	121	42.6	±μ		450			
NM200, 201200		0935	X		OCA	# 8	122	26.5	±9-6		244			
w 900, Sw300	8-16	0945	x		9	#9	121	34.8	ナリ		<50			
NW800, SW 300	8-16	1000	X		2	# 10	123	57.2	±12		۷49			
NU 800, SW 200	8-16	1015	X		No	#1/	121	45.6	±12		۷48	,		
NW700, Sw100	8-16	1035	×		Ś	#212	122	41.9	土川		443			
NW600, SW100		1050	×		Nο	#13	120	15.1	±7.5		437			
NW700 SW200	8-16	1320	Х		No	#14	123	416			662	As 31.2±14		
														·
									,	,				
								 				····		
L	<u> </u>	L	L		l	<u> </u>		L	!		<u> </u>			

Location ID	Samplin	g Data		Prep		XR	F Data			C	onc (pp	om)	Split to	Other
Grid Node	Zoo S Date	Time	Pan	Lab	Frag?	Read No.	Count (sec)	Pb	Std	Cu	Std	Other Metals	EMAX	Comments
Bains Gap Tank Site														
NW 600, SW 200	8-17	1300	X		NO	#6	121	33.8	±12		۷57			
NW 500, SW200	8-17	1315	×		No	# 7	121	15	I9.1		< 46			
NW400, SW100		1325	χ		OCA	# 8	121	25.7		•	< 5 ₆			
NW 300, SN 200		1335	×		ひひ	#9	122	30.4	17		449	Ar 20±13		
NO 200, 5 W 200	8-17	1350	×		20	# /0	121	41.5			445			
NW100, SW 200	8-17	1405	×		<i>N</i> 0	#11	120	32.1	112		455			***************************************
Nazoo, 5w100	8-17	1415	X		No	#12	121	49.9			477			
NU300, SW100		1430	X		No	#/3	121	36.9			445			
NW400, SW10U		1445	×		20	#14		24.3			248			
NW 500, SU100	8-17	1500	×		M	\$ 15	121	20.6	±10		451			**************************************
				·										
														- · · · · · · · · · · · · · · · · · · ·
							- *** *							
							· , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			· · ·				
	·	l	L		L	<u> </u>					L1		_l.	

Location ID	Samplin			Prep		XR	F Data			(Conc (p	pm)	Split to	Other
Grid Node	ک ی کی کا	Time	Pan	Lab	Frag?	Read No.	Count (sec)	Pb	Std	Cu	Std	Other Metals	EMAX	Comments
Snap Lane Tank Site						·								R23
N800, W100	8-8	0925	X		NO	#6	134	15.6	10	۷	57			ADJ TODRIVEWAD
N700, W100	8-8	0935	X		W	#7	122	418			63		R23	F1#19 18/10
N600, W100	8-8	0955	X		NO	#8	122	24.2	土川	4	56			FL# 16 ~50 mouse
N500, W100	8-8	(005	λ		んり	#9	126	27.4	±9.4	۷	44			FL#16 ~ 50' manus
N400, W100	8-8	1020	×		w	#10	133	31.7	エニ	4	54			
4400, W200	8-8	1030	x		NO	#11	121	23.6	土12					
N500, W200	8-8	1045	×		NO	#12	122	25.7	エリ					
N600, W200	8-8	1100	×		M	#13	123	214						
N700, WZW	8-8	1115	×		むり	#14	121	415				As 20.7 ± 13	R2	3 FL # 16 BENNO PD
N800, W100	8-8	1125	ĸ		MO	半15	129	27.9	± 12					
N 800 W300	8-8	1350	κ		NO	#16	122	17.6	£9.	0				
N700, W300	7-8	1400	X		NO	#17	121	1 :	£9.	-				
N600, W300	8-8	1420	X		MO	#18	153	32.9	エハ					
N500, W300	5-8	1430	X.		w	#19	122	65.3	± 14					
N400, W300	8.8	1495	大		WO	# 20	123	38,9	エル					
N400 W400	8-8	1500	×		NO	#21	123	26.60	I (1					
N500, W400	8.8	1510	×		NO	#22	122	19.4	± //					
N600, W400	8-8	1525	×		No	#23	124	15.9	± 91.8	?				
N700, N400	8-8	(535	X		٨٤	#24	122	23,8	I 11					
N300, W400	8-8	1545	太		<i>√</i> 00	*25		414						
		,												

Location ID	Samplir	ng Data		Prep		XRF Data		Conc (ppm)				m)	Split to	Other
Grid Node	Date	Time	Pan	Lab	Frag?	Read No.	Count (sec)	Pb	Std	Cu	Std	Other Metals	EMAX	Comments
Snap Lane Tank Site														
N300, W400	8-11	1040	х		NO	#8	122	32.6	±12	4	54			
N300, W300	8-11	1050	×		~ 0	#9	130	25.4	± 1D	<	50			
4200, W200	8-11.	1105	×		No	# 11	121	26.1	112	<	56			
N300, W206	8-11	1120	y		No	#12	121	32.6	<u>+ 11</u>	<	54			
N300, W100	8-11	1130	×		No	#13	121	51.6	± 14	4	64			
N200, W100	8-11	1315	×		ماه	# 15	122	19.5	12	4	62			
NIOO, WIOO	8-11	1325	×		No	* 16	128	24.9	±11		53			
NØ, W100	8-11	1335	×		NO	#17	128	20.6	12	4	63	7		AOJ. TO ROAD
N100, WZ00	8-11	1355	×		No	# 18	122	29.1	111		52			
N200, W300	8-11	1400	X		め	#19	121	55 ±	14	4	61			
							,							

	Location ID	Samplin	g Data		Prep		XR	F Data			Conc (p	pm)	Split to	Other
	Sample ID	Date	Time	Pan	Lab	Frag?	Read No.	Count (sec)	Pb	Std C		Other Metals	EMAX	Comments
	QA Splits with EMAX													
1000 M	B6(NU800, SW300)	8-18	1505	メ	×	2	#6	(21	77.2	±13	447			DUPUCATS
340002	BC(NO 500, SN 300)	8-18	1515	K	X	20	+ 7	(Z)	54.3	±12	<49			
5 y 0003	BG (NW 660, SW400)	8-18	1520	Х	χ	40	# 8	(34	339	± ()	49			
ऽ५०००५	BG (NW300, SW400)	8-18	1525	K	ĸ	2	#9	121	21.8	±9.7	247			
760005	SNAP (N500, W300)	8-18	1535	Х	۲	9	# 10	(35	71.3:	± 13	LU8			
, u 0007	(2002 M 1001M) 98145	8-18	1540	k	×	~0	#11	126	(9±	9.7	49			
in 0008	SUAP (4800, W100)	8-18	1545	Х	Y	20	#12	[2]	415		<55	As 25.6±13		
:														
										£	r			
								'g						
														· · · · · · · · · · · · · · · · · · ·

XRF CALIBRATION FORMS

1. Initial Calibration Data:	Project No: 7	<u>96887</u>						Cost C	ode: 15120200	
No	1. Initial Ca	llibration Da	ıta:		Date:	8-8-	05	Check XRF cl	ock.	
No Comments: No No No No No No No N	Is XRF warr	ŋ-up			Time:	080	<u>වට </u>	Agree?		
2. Start-of-Day Calibration: Note: Cd-109 will be used for Pb, Cu calibration; Am-241 will be used for Sb. Sources Used (check all that apply): X	>15 min? (Yes	No					Yes	No	
2. Start-of-Day Calibration: Note: Cd-109 will be used for Pb, Cu calibration; Am-241 will be used for Sb. Sources Used (check all that apply): X	Internal calil	bration comp	lete? (\smile	No	Comments:	~	ow.		
Sources Used (check all that apply): X Cd-109 NA Fe-55 NA Am-241	Record energ	gy resolution	:	377	eV	Sour	ce Strength:	NIR	_mCi	
Blank - SiO ₂ , Count: 12 sec # 2	2. Start-of-	Day Calibra	tion:	Note : Cd-109 wi	ll be used fo	or Pb, Cu calibr	ration; Am-241	will be used for Sb.		
Conc (ppm)	Sources Use	d (check all that a	pply):	X]Cd-109	NA]Fe-55	NA]Am-241	
Element Certified Detected Accept? Element Certified Detected Accept?		Blank - SiO	2, Count: 121 s	sec #2		Mod	erate Lead-	NIST 2711, Count	121 _{sec} #4	
Pb		Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD	
Cu <50	Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?	
Ni < 70 < 57 Ni < 70 150±89 Other metals: Zn (<40) <26, As (<30) <14, Hg(<35) <49; Cr (<300) <10	Pb	< 25	C12	403	_	Pb	1,162	1010146	14% 40	
Other metals: Zn (<40) <10	Cu	< 50	472		_	Cu	114	<76		
Hg(<35) 49. Cr (<300) 466 Low Lead-NIST 2586, Count: 124 sec #3 Conc (ppm)	Ni	< 70	<57	+	_	Ni	< 70	150189	F	
Low Lead-NIST 2586, Count: 121 sec #3 High Lead-NIST 2710, Count: 180 sec #5 Conc (ppm)	Other metals:	Zn (<40) 426	_, As (<30)_ 4 1	٩,	_	Other metals: 2	Zn (350.4) Z V	3 As (105) <u> </u>	ίч ,	
Conc (ppm) % RPD Element Certified Detected Accept? Element Certified Detected Accept?	Hg(<35) 49.	Cr (<300) <u> </u>	<u> </u>			Hg (<35)	Cr (<300) <u>U</u>	6 6		
Element Certified Detected Accept? Element Certified Detected Accept?	Lov	w Lead-NIST	Γ 2586, Count: \(\frac{1}{2} \)	21 sec #3		Hi	gh Lead-NI	ST 2710, Count: [8	6 sec #5	
		Conc	c (ppm)	% RPD			Сс	nc (ppm)	% RPD	
Pb 432 336 ± 29 25% 48 Pb 5,532 5020 ± 100 9.7% 48]	Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?	
	Pb	432	336 ± 29	25% 483	-	Pb	5,532	5020±100	9-7% 183	
Cu 81* 477 Cu 2,950 2220±140 25%	Cu	81 *	477			Cu	2,950	2220 + 140	28%	
Ni 75* (160 Ni 14.3 (180	Ni	75 *	6160	4		Ni	14.3	<180	ł	
Other metals: $Zn(352)$ 347 , $As(18.9)$ 447 , Other metals: $Zn(6,952)$ 6760 , $As(626)$ 962 479 , 48	Other metals: Zi	n (352) 347	_, As (18.9) <u>~</u>	?		Other metals: Zn(6,952)6760, As (626) 962 + 98				
Hg(<35), Cr (301) 923 Hg(32.6) - 36 Cr(<300) 576 1 300	Hg(<35),	Cr (301) 92			Hg(32.6) - 36	Cr(<300)	60579			
Comments: * Not a NIST certified value.	Comments:	* Not a NIST c	ertified value.							

Project No: 7	<u>96887</u>				W (24)		Cost C	ode: 15120200	
1. Initial Ca	alibration Da	ıta:		Date:	8-10	-05	Check XRF clo	ock.	
Is XRF warr	n-up			Time:	070	0	Agree?		
>15 min?	(es)	No					(Yes)	No	
Internal cali	bration comp	lete?	Ves	No	Comments:	^	10NE		
Record energ	gy resolution	:	37	3 _{eV}	Sourc	ce Strength:	N/N	_mCi	
2. Start-of-	Day Calibra	tion:	Note: Cd-109 wi	ll be used fo	or Pb, Cu calibr	ration; Am-241	will be used for Sb.	_	
Sources Use	d (check all that a	pply):	X	Cd-109	NA Fe-55 NA Am-2				
,	Blank - SiC)2, Count: 122 s	ec #2		Mod	erate Lead-	NIST 2711, Count	121 sec #4	
	Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD	
Element	Certified	Detected	Accept?]	Element	Certified	Detected	Accept?	
Pb	< 25	412	4हा	_	Pb	1,162	1010 ±46	14% 405	
; Cu	< 50	+7 Ly7			Cu	114	< 7 5		
Ni	< 70	157			Ni	< 70	4130	+	
Other metals:	Zn (<40) <u></u> <27	As (<30)'	3	- -	Other metals: 2	Zn (350.4) _3 3	8+40 As (105) 1°	98±49	
Hg(<35) <u>(9.9</u>	Cr (<300) <u></u>	<u> </u>		-	Hg (<35) <19	, Cr (<300 <u>)</u> 5	19± 170		
Lov	w Lead-NIST	Γ 2586, Count: 15	23 sec #3		Hi	gh Lead-NI	ST 2710, Count: [2	Z _{sec} #5	
	l	c (ppm)	% RPD			<u> </u>	nc (ppm)	% RPD	
Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?	
Pb	432	363 ±29	17% YES		Pb	5,532	4990±130	10% yos	
Cu	81 *	480			Cu	2,950	2220±170	28%	
Ni	75 *	3537150	4		Ni	14.3	4220	4	
Other metals: Zi	324 332) 324	_, As (18.9) 49.	7 £31		Other metals: Zn(6,952) (980 , As (626) 983+, 126				
Hg(<35) _ 6	Cr (301)	٥			Hg(32.6)_44	€r(<300) <u>4 \$</u>	20		
Comments:	* Not a NIST c	ertified value.							

Project No: 7	<u>96887</u>						Cost C	code: 15120200
1. Initial Ca	alibration Da	ıta:		Date: Time:	8-11-		Check XRF cl	ock.
>15 min? (Yes	No		Time.	_ 0 /00		Yes	No
Internal cali	bration comp	lete?	(Yes	No	Comments:	\mathcal{N}°	NE	
Record energ	gy resolution	•	374	eV	Sourc	ce Strength:	N/A	_mCi
2. Start-of-	Day Calibra	tion:	Note : Cd-109 w:	ill be used fo	or Pb, Cu calibr	ration; Am-241	will be used for Sb.	_
Sources Use	d (check all that a	apply):	X	Cd-109	NA	Fe-55	NA	Am-241
·3	Blank - SiC) ₂ , Count: 272 _s	ec #24		Mod	erate Lead-	NIST 2711, Count	: 122 sec #6
	Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD
Element	Certified	Detected	Accept?	_	Element	Certified	Detected	Accept?
Pb	< 25	< 8.1 - <11	YEI		Pb	1,162	1110±49	4.490 403
Cu	< 50	x <43		<u> </u>	Cu	114	99.1±52	1490
Ni	< 70	50-22	260 Y	_	Ni	< 70	L130]
Other metals:	Zn (<40) <18	_, As (<30) <u></u>	3,214	- -	Other metals: 2	Zn (350.4) <u>3</u> 3	S± 41 As (105) 10	02± 50
Hg(<35) C6 3	Cr (<300) <u></u>	75 (110 -			Hg (<35) <u>C21</u>	, Cr (<300) Z	270 ————	
Lov	w Lead-NIST	Γ 2586, Count: _	21 sec # 5		Hi	gh Lead-NI	ST 2710, Count: \2	1 sec #7
	Con	c (ppm)	% RPD			Со	nc (ppm)	% RPD
Element	Certified	Detected	Accept?]	Element	Certified	Detected	Accept?
Pb	432	425±33	1.6% YES	-	Pb	5,532	5470± 140	1.196 /6)
Cu	81 *	L84		-	Cu	2,950	3080±190	4.3%
Ni	75 *	L18D	+	_	Ni	14.3	C220	
Other metals: Zi	n (352) <u>3</u> 07±	<u>4,</u> 2 _{As (18.9)} <u> </u>	ا	_		Zn(6,952) 70 3	301 200 As (626) 8	25±130
Hg(<35) <17,	Cr (301) < 39	D		_ ,	LY9 Hg(32.6),	Cr(<300)	57D	
Comments:	* Not a NIST c	ertified value.						
								_

Project No: 7	96887						Cost C	ode: 15120200
1. Initial Ca Is XRF warn >15 min?	nlibration Da m-up Yes	ta: No		Date: Time:	8-15	05	Check XRF cl	ock. No
Internal cali	bration comp	lete?	Yes	No	Comments:	Non	ર્ડ	
Record ener	gy resolution:		377	eV	Sour	ce Strength:	NR	_mCi
2. Start-of-	Day Calibra	tion:	Note: Cd-109 wi	ll be used fo	or Pb, Cu calib	ration; Am-241	will be used for Sb.	
Sources Use	d (check all that a	pply):	X]Cd-109	NA]Fe-55	NA	Am-241
	Blank - SiO	2, Count: 121 s	ec #3		Mod	erate Lead-	NIST 2711, Count	121sec #5
	Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD
Element	Certified	Detected	Accept?	_	Element	Certified	Detected	Accept?
Pb	< 25	(12	453	_	Pb	1,162	9912 45	16% /03
Cu	< 50	442		_	Cu	114	43	
Ni	< 70	461	V	_	Ni	< 70	140586	ł
Other metals:	Zn (<40) <u></u> く とつ	, As (<30) <13	3		Other metals: 2	Zn (350.4) 3	24 As (105) 1	78±4,8
Hg(<35) L9.3	Ocr (<300) <u>(11</u>	0		·	Hg (<35) C19	, Cr (<300) <u>4</u>	35217	
Lov	w Lead-NIST	2586, Count: <u>U</u>	74 sec 44		Hi	gh Lead-NI	ST 2710, Count: 1 2	Usec #6
25.	Conc	c (ppm)	% RPD			Co	onc (ppm)	% RPD
Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?
Pb	432	369220	9% 453	_	Pb	5,532	5040 £ 130	9.39040
Cu	81 *	۷ 5 4		_	Cu	2,950	2550±180	医15%
Ni		301±79	U	_	Ni	14.3	<१२२०	t
Other metals: Z	m (352) 322t	?7 _{As (18.9)} <u>43</u>	ļ	_	Other metals:	Zn(6,952) 70	10 , As (626) <u>/</u>	080,
Hg(<35) <u>L11</u> ,	Cr (301) 941				Hg(32.6) 444	Cr(<300) <u>८</u> 5	<u>So</u>	
Comments:	* Not a NIST co	ertified value.						
				,				· · · · · · · · · · · · · · · · · · ·

Project No: 7	9 <u>6887</u>						Cost C	ode: 15120200	
Is XRF warr				Date: Time:	08-16 075		Check XRF cl		
>15 min? (Yes bration comp	No lete?	Yes	No	Comments:	Nont	Yes	No	
	gy resolution	,	371	eV		ce Strength:	. 1/4	mCi	
2. Start-of-	Day Calibra	tion:	Note: Cd-109 wi	ill be used fo	or Pb, Cu calib	ration; Am-241	will be used for Sb.		
Sources Use	d (check all that a	pply):	X]Cd-109	NA	IA Fe-55 NA Am-2			
	Blank - SiC	2, Count: 187 s	sec #2		Mod	erate Lead-	NIST 2711, Count	122 sec #4	
	Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD	
Element	Certified	Detected	Accept?	_	Element	Certified	Detected	Accept?	
Pb	< 25	<u> </u>	400	_	Pb	1,162	1140 = 49	1.9% 403	
Cu	< 50	L35		_	Cu	114	78.4 \$ 51	37%	
Ni	< 70	449	1		Ni	< 70	(130		
Other metals:	Zn (<40) <u>(U</u>	, As (<30) <u> </u>	<u> [</u>	- '	Other metals: 2	Zn (350.4) 28	9 ± 39 As (105) _	0155	
Hg(<35) <u>47.8</u>	Cr (<300)	89		_	Hg (<35)	, Cr (<300) <u>47</u>	.70 —		
Lov	w Lead-NIS	Γ 2586, Count:]	22 sec \$3		Hi	gh Lead-NI	ST 2710, Count: {2	2 _{sec} # 5	
	Con	c (ppm)	% RPD			Co	nc (ppm)	% RPD	
Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?	
Pb	432	385± 31	12% [_	Pb	5,532	5490±140	<12 KJ	
<u>Cu</u>	81 *	480		_	Cu	2,950	2910±180	1.3%	
Ni	75 *	C180	μ	_	Ni	14.3	L220	<u> </u>	
Other metals: Z	n (352) 283	_, As (18.9) <u></u>	9		Other metals:	Zn(6,952) 6	20, As (626) 8	34± 120	
Hg(<35) <u>417</u> ,					Hg(32.6) <u> </u>	Cr(<300)	580		
Comments:	* Not a NIST c	ertified value.							

Cost Code: 15120200

Project No: <u>796887</u>

XRF Calibration Form

1. Initial Ca	llibration Da	ta:	· · · · · · · · · · · · · · · · · · ·	Date: Time:	8-17-0		Check XRF clo	ock.		
>15 min?	Yes	No					Yes	No		
Internal calil	oration compl	lete?	Yes	No	Comments:	NIN	6			
Record energ	gy resolution:		37	3 eV	Sourc	ce Strength:	N/R	_mCi		
2. Start-of-	Day Calibrat	tion:	Note : Cd-109 w	vill be used fo	or Pb, Cu calibr	ation; Am-241	will be used for Sb.			
Sources Use	d (check all that a	pply):	X	Cd-109	NA	Fe-55	NA]Am-241		
	Blank - SiO	2, Count: [22 s	ec #2		Mode	erate Lead-	NIST 2711, Count	121 sec#4		
	Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD		
Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?		
Pb	< 25	۱۱	451		Pb	1,162	1050± 47	10% 403		
Cu	< 50	442			Cu	114	476			
Ni	< 70	65.6240		_	Ni	< 70	160±89	J		
Other metals:	Zn (<40) <u>4 2 4</u>), As (<30) <u>41</u> 3	,		Other metals: 2	Zn (350.4) 29	2 ± 39 As (105) 13	33± 49		
Hg(<35) 46,	Cr (<300)	<i></i>			Hg (<35) <u>(19</u>	, Cr (<300) 3	22			
Lov	v Lead-NIST	2586, Count: 17	21 sec #3	1	Hi	gh Lead-NI	ST 2710, Count: [17	.2 _{sec} #5		
	Cond	c (ppm)	% RPD				onc (ppm)	% RPD		
Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?		
Pb	432	398±30	8.2% yc	خ	Pb	5,532	5000± 130	10% 453		
Cu	81 *	481			Cu	2,950	2270+ 170	76%		
Ni	75 *	234F150	+		Ni	14.3	4 210	<u> </u>		
Other metals: Zi	n (352) 328	_, As (18.9)_ 	<u>\$</u>	-	Other metals:	Zn(6,952) 69	10 , As (626) 10	080F130		
Hg(<35) <u><16</u> ,					Hg(32.6),	Cr(<300) 	540			
Comments:	Comments: * Not a NIST certified value.									

Project No: 79	96887						Cost C	ode: 15120200
1. Initial Ca Is XRF warm >15 min?		ta: No		Date: Time:	8-18- 1435		Check XRF clo	ock. No
Internal calib	oration comp	lete? (Yes	No	Comments:	Nov	ve r	
Record energ	gy resolution	:	374	eV	Sourc	ce Strength:	NA	_mCi
2. Start-of-l	Day Calibra	tion:	Note: Cd-109 wi	ll be used fe	or Pb, Cu calibr	ation; Am-241	will be used for Sb.	_
Sources Used	d (check all that a	pply):	X	Cd-109	NA	Fe-55	NA	Am-241
	Blank - SiO	2, Count: 122 s	ec #2]	Mode	erate Lead-	NIST 2711, Count	12/sec #4
	Con	c (ppm)	< DLs			Co	onc (ppm)	% RPD
Element	Certified	Detected	Accept?]	Element	Certified	Detected	Accept?
Pb	< 25	<12	YES	_	Pb	1,162	1120±48	3.72 yes
Cu	< 50	444	1	_	Cu	114	87. 3±51	26%
Ni	< 70	< 61	4	-	Ni	< 70	4130	l
Other metals: 2	Zn (<40) <u>4 27</u>	As (<30) <1	1	_	Other metals: 2	Zn (350.4) 3	24 As (105) <u>7</u>	9.8£50
Hg(<35) <u><9.7</u>	Cr (<300) <u> </u>	D			Hg (<35) <u>420</u>	Cr (<300)_	270	
Lov	v Lead-NIST	Γ 2586, Count: _	U sec #3		Hi	gh Lead-NI	ST 2710, Count: / 2	1/sec #5
	Con	c (ppm)	% RPD			Co	nc (ppm)	% RPD
Element	Certified	Detected	Accept?		Element	Certified	Detected	Accept?
Pb	432	406 = 31	6.2 YES	_	Pb	5,532	5130+130	7.5% لادًا
Cu	81 *	482		_	Cu	2,950	2900± 180	1.796
Ni	75 *	<92 ←	<160 F	_	Ni	14.3	4210	F
Other netals: Zi	n (352) 333	_, As (18.9)	_;	_	Other metals:	Zn(6,952) 6 3	350 , As (626) 70	68 ± 120
Hg(<35) <u><17</u> ,	Cr (301)_ <u>∠3</u>	70		-	Hg(32.6) <u></u>	'Cr(<300) <u></u>	550	
Comments:	* Not a NIST c	ertified value.						

APPENDIX B

SAMPLE COLLECTION LOGS AND ANALYSIS REQUEST/CHAIN-OF-CUSTODY RECORDS

Sample Collection Log

	1 Toject.	796887 Fort McClellan, SAD TE	<u>CRC</u> Man	ager: Moran, S	teve G		
			RFA/COC Number:	TANK-08180)5		
	Site:	AWWSB Tank Sites	Collection Date:	8/16/2005			
	Location Code:	Bains Gap Road Site	Collection Time:	10:05			
S	Sample Number:	SU0001	Start Depth:	,N/A	0′		nu
	Sample Name:	BG(NW800, SW300)-SS-SU0001-XRF	End Depth:	NA	0.5 (Bus	9-3
Sa	ampling Method:	Hand Trowel/XRF Pan Prep					
			Sample Team:	R. McBride			
Check							
<u>ਹ</u> 	Analytical Suit TAL Metals		Type TCLP (Y)	(N)			
	17 Totals	· · · · · · · · · · · · · · · · · · ·					
	Site Sketch:						
		2-2-1- 2	. 45				
	•	SEE REPORT A	Gure.				l
							ļ
	, , , , , , , , , , , , , , , , , , , 						
	Comments:	XRF Pb: 57.2 ppm				<u>.</u>	
		1					
		/					
		AACA				/	
		///// L a zo ==		00.	1.1: 1	k n. 112	2/2/
ഹരം	ged BV/Date	MC/ 9-30-00 R	eviewed BY/Date:	(Inoc	dulint	1 De 10	5/

Sample Collection Log

Project:	796887 Fort McClellan, SAD TE	<u>RC</u> Man	ager: <u>Moran, S</u>	teve G	
		RFA/COC Number:	TANK-08180)5	
Site:	AWWSB Tank Sites	Collection Date:	8/17/2005		
Location Code:	Bains Gap Road Site	Collection Time:	13:51		
Sample Number:	SU0002	Start Depth:	N /A	_0 /	aw 9-30
Sample Name:	BG(NW200, SW200)-SS-SU0002-XRF	End Depth:	N/A	0.51	R65
Sampling Method:	Hand Trowel/XRF Pan Prep				
		Sample Team:	R. McBride		
S Analytical Suit	a Qty Size Units	Type TCLP (Y	(N)		
TAL Metals		WM N	,		
Site Sketch:					
Sere	. REPORT FIGURE.				
Comments:	XRF Pb: 41.5 ppm				
•	1			2.18H	
	111 9-20-05 R	eviewed BY/Date:	~ A	, ,	<i>(</i> ,
ogged BY/Date:	WHY 9-30.05 R	eviewed BY/Date:	Now	2 Win	to 101

Sample Collection Log

	Project:	796887 For	t McClell	an, SAD TE	<u>erc</u>	Mai	nager: <u>M</u> e	oran, S	eve G	
					RFA/CO	C Number:	TANK-	08180	5	
	Site:	AWWSB T	ank Sites		Collec	ction Date:	8/15/2	005		
	Location Code:	Bains Gap I	Road Site		Collec	ction Time:	11	:30		
	Sample Number:	SU0003			Si	tart Depth:		V/A-	0	Pu 9-30
	Sample Name:	BG(NW600,	SW400)-SS-	-SU0003-XRF	1	End Depth:]	V/A	0.5'	Bos
S	ampling Method:	Hand Trow	el/XRF Pa	n Prep						
~					San	ıple Team:	R. McB	ride		
Check	Analytical Suite	Qty	Size	Units	Туре	TCLP (Y	/N)			
	TAL Metals	1	4	oz C	:WM	N				
	Site Sketch:	SeE	TERC	ort file	uus					
	Comments:	XRF Pb:	24.7	ppm						
									· · · · · · · · · · · · · · · · · · ·	

10/3/05 Reviewed BY/Date: NayWinton 10/3/05

Project:	796887 Fort McClellan, SAD TE	<u>PRC</u> Mai	nager: <u>Moran,</u>	Steve G		
		RFA/COC Number:	TANK-0818	05		
Site:	AWWSB Tank Sites	Collection Date:	8/15/2005			
Location Code:	Bains Gap Road Site	Collection Time:	14:11			
Sample Number:	SU0004	Start Depth:	N/A	0 ′		9-30-05
Sample Name:	BG(NW300, SW400)-SS-SU0004-XRF	End Depth:	N/A	0.5'	BUS	
	Hand Trowel/XRF Pan Prep	Sample Team:	R. McBride			
Analytical Suite		Type TCLP (Y	/N)]			
Site Sketch:						
SEE F	ina Ropont Fil	une.				
Comments:	XRF Pb: 14.8 ppm					
ogged BY/Date	1-30-05 R	eviewed BY/Date:	(Troi	zWί	nto	10/3/0

	Project:	796887 Fort McClellan, SAD TE	RC Man	ager: <u>Moran, S</u>	Steve G		
			TANK-08180)5			
	Site:	AWWSB Tank Sites	Collection Date:	8/15/2005			
	Location Code:	Bains Gap Road Site	Collection Time:	14:11	·		
,	Sample Number:	SU0004-MS	Start Depth:	NA	0	cs-6 m	
	Sample Name:	BG(NW300, SW400)-MS-SS-SU0004-M	S End Depth:	N/A	0.5	izus	
S	ampling Method:	Hand Trowel/XRF Pan Prep					
			Sample Team:	R. McBride			
Check							
<u>ပ</u>	Analytical Suite TAL Metals		Type TCLP (Y/WM N	/N) 			
	Site Sketch:			-			
	Se	E AMAI NEST. FIbuno.					
	Comments:	XRF Pb: 14.8 ppm					

9-30-05 Reviewed BY/Date: 2013/05

	Project:	796887 Fort M	IcClellan, SAD T	<u>rerc</u>	C Manager: Moran, Steve G							
				RFA/C	OC Number:	TANK-08180)5					
	Site:	AWWSB Tank	Sites	_ Col	lection Date:	8/15/2005						
	Location Code:	Bains Gap Roa	d Site	Col	lection Time:	14:11						
,	Sample Number:	SU0004-MSD			Start Depth:	N/A	0 (1 9-70				
	Sample Name:	BG(NW300, SW4	100)-MS-SS-SU0004	-MSD	End Depth:	ŊA	8.5	Bus				
S	ampling Method:	Hand Trowel/X	KRF Pan Prep	_								
				S	ample Team:	R. McBride						
Check	Analytical Suite	Qty S	Size Units	Туре	TCLP (Y	/N)						
	TAL Metals	1	4 oz	CWM	N							
	Site Sketch:	AL NEPT	Fronus									
	Comments:	XRF Pb:	14.8 ppm									
									_			

9-30-05 Reviewed BY/Date: A. May Winter 10/3/05

Project:	796887 Fort M	IcClellan, SAD TI	ERC Man	ager: <u>Moran, S</u>	Steve G	
			TANK-08180)5		
Site:	AWWSB Tank	Sites	Collection Date:	8/8/2005		
Location Code:	Snap Lane Site	2	Collection Time:	13:37		
Sample Number:	SU0005		Start Depth:	₩Æ	۵′_	1-30
Sample Name:	Snap(N500, W30	0)-SS-SU0005-XRF	End Depth:	ŅA	0.5'	Bes
Sampling Method:	Hand Trowel/X	KRF Pan Prep				
			Sample Team:	R. McBride		
ਨੂੰ ਨ Analytical Suite	ı Qty S	Size Units	Type TCLP (Y/	N)		
TAL Metals	1		CWM N	~ ')		
Site Sketch:						
SEE F	NAL NOP	F764NS~				
Comments:	XRF Pb:	65.3 ppm				

9-30-05 Reviewed BY/Date: 2 Pay Winton 10/3/05

Project:	796887 Fort McClellan, SAD	<u>ΓERC</u> Man	ager: <u>Moran, S</u>	Steve G	
		RFA/COC Number:	TANK-0818	05	
Site:	AWWSB Tank Sites	Collection Date:	8/8/2005		
Location Code:	Snap Lane Site	Collection Time:	13:37	•	
Sample Number:	SU0006	Start Depth:	₩Ā	0 /	nm 9-30
Sample Name:	Snap(N500, W300)-SS-SU0006-FD	End Depth:	₹√A	0-5 '	Bos
Sampling Method:	Hand Trowel/XRF Pan Prep	_			
		Sample Team:	R. McBride		
Analytical Suit TAL Metals	Qty Size Units 1 4 oz	Type TCLP (Y/	N)		
Site Sketch:					
SEE	RNAL ROT FIG.				
Comments:	XRF Pb: 65.3 ppm				
Logged BY/Date:	WED 4-30-05	Reviewed BY/Date:	Jan	z Wi	itoz 10/3/0

Project	: 3	796887 F	ort McClel	lan, SAD T	<u>ERC</u>	Mana	ger: <u>Moran, S</u>	Steve G	
					RFA/Co	OC Number: [ΓANK-0818	05	
Si	te: <u>I</u>	AWWSB	Tank Sites		Coll	ection Date: _	8/11/2005		
Location Cod	de: <u>S</u>	Snap Lane	Site		Colle	ection Time: _	13:54		
Sample Numb	er: S	SU0007				Start Depth: _	_N/A-	6 '	Pm 9-30
Sample Nan	ne: S	Snap(N100,	, W200)-SS-S	U0007-XRF		End Depth: _	μA	0.5 '	Fraks
Sampling Metho	od: I	Hand Trov	wel/XRF Pa	ın Prep					
¥					Sa	mple Team: <u>I</u>	R. McBride		
S Analytical S		Qty	Size	Units	Туре	TCLP (Y/I	N)		
TAL Metals		1	4	0Z	CWM	N			
Site Sketch:	•	,	,						
Se	€	FNAL	NEPT	F26.					
						•			
									:
Comments:	У	KRF Pb:	29.1	ppm					
			\wedge						

9-3005 Reviewed BY/Date: 10/3/05

Project:	796887 Fort McClellan, SAD T	ERC Man	ager: Moran, St	eve G	
		RFA/COC Number:	TANK-081805	5	
Site:	AWWSB Tank Sites	Collection Date:	8/8/2005		
Location Code:	Snap Lane Site	Collection Time:	9:29		
Sample Number:	SU0008	Start Depth:	₹V/A	0 1	Ma-20
Sample Name:	Snap(N800, W100)-SS-SU0008-XRF	End Depth:	₩Æ	0-5	FT 1865
Sampling Method:	Hand Trowel/XRF Pan Prep				
		Sample Team:	R. McBride		
S Analytical Suit					
Analytical Suite TAL Metals		Type TCLP (Y/	N)		
TAE Metals					
Site Sketch:					
Sec	FRAL REPT FI	ر .			
6	NDE DI 15 6				
Comments:	XRF Pb: 15.6 ppm				
				,	, ,
Logged BY/Date:	11/1/9-30-05	Reviewed BY/Date:) Zay U	Justo	<u>19/3/05</u>

ANALYSIS REQUEST AND

05 HI	85
-------	----

18

REFERENCE	COC NO.:	TANK-081805
		

Shaw	·z	C	HAIN-OI	F-CUSTO	DY REC	CORD			PAGE _1_ OF	
	ronmental & l	nfrastructure, Inc.						Bill To:	: Shaw Environment	al
									Accounts Payable	
Project 1	Name/No: Fort	McClellan 796887			nipment Date:		05		312 Directors Drive	
Sample Team	n Member: R. N	McBride			y Destination:				Knoxville, TN 379	
Pro	fit Center:				atory Contact:			Report To	: Shaw Environment	al
Project	Manager: Mon	ran, Steve G		Project Co	ontact/Phone:	R. McBrid	de 865-705-7412		Randy McBride	
Purchase (Order No.:			Carrier	Waybill No.:	UPS 1Z.66	V.539.01		312 Directors Drive)
Required Re	eport Date: Nor	mal		•					Knoxville, TN 379	23
San	ıple	Sample Type/	Date/Time	Container	Sample	Pre-			Condition on	Disposal
Nun	nber	Description	Collected	Туре	Volume	servative	Requested Testing	Program	Receipt	Record
SU0001		BG(NW800, SW300)-SS- SU0001-XRF	8/16/05 10:05	4 oz CWM	4 oz	Cool 4 deg C	TAL Metals by 6010B/70	00		
SU0002		BG(NW200, SW200)-SS-	8/17/05	4 oz	4 oz	Cool	TAL Metals by 6010B/70	00		
		SU0002-XRF	13:51	CWM		4 deg C				
SU0003		BG(NW600, SW400)-SS-	8/15/05 11:30	4 oz CWM	4 oz	Cool 4 deg C	TAL Metals by 6010B/70	00		
SU0004		SU0003-XRF		 	4.07	Cool	TAL Metals by 6010B/70	00		
	Remove MS/MSD	BG(NW300, SW400)-SS- SU0004-XRF	8/15/05 14:11	4 oz CWM	4 oz	4 deg C	TAL Metals by 6010B/70	00		
SU0004-MS/ MSD	from same container.	BG(NW300, SW400)-MS-SS- SU0004-MS	8/15/05 14:11							
SU0005		Snap(N500, W300)-SS-	8/8/05	4 oz	4 oz	Cool	TAL Metals by 6010B/70	00		
		SU0005-XRF	13:37	CWM		4 deg C				
SU0006		Snap(N500, W300)-SS- SU0006-FD	8/8/05 13:37	4 oz CWM	4 oz	Cool 4 deg C	TAL Metals by 6010B/70	00		
SU0007		Snap(N100, W200)-SS-	8/11/05	4 oz	4 oz	Cool	TAL Metals by 6010B/70	00		
		SU0007-XRF	13:54	CWM		4 deg C	,			
Special Instru	ctions:									
<u> </u>		tion: Use caution when han	ıdling.				Sample Disposal:			
Non-haz:	Fl	ammable:	Poison E	3:	Unknown:	<u>X</u>	Return to Client:	Disposa	l by Lab: X	Archive:
Furnaround Tim	ie:			Level of QC	Required:					
Normal: X	R	ush:		I	II	III	_	Project Spe	cific: X	
l. Rehinquish	ed by: R.I	. McBride, Shaw Enivronm	iental	Date: 8-18	3-05	1. Receiv	ed by	Physics	Date: 🛭	8,19.05.
W/5/1		,		Time: 145	5		AND THE PROPERTY OF THE PROPER	20000	Time:	10:00
2. Relinquished by:				Date:		2. Receiv	ed by:		Date:	
•	-			Time:					Time:	
3. Relinquished by:				Date:		3. Receiv	ed by:		Date:	
•			Time:		1			Time:		
Comments: I	f samples not	received in good condition	contact Rand	ly McBride at	t 865-705-74	112.		T=3	.6°C	

ANALYSIS REQUEST AND CHAIN-OF-CUSTODY RECORD (Cont.)

PAGE _2_ OF 2

Project Name/No.: Fort McClellan 796887 Laboratory Destination: EMAX Sample Shipment Date: 08-18-2005

ſ	Sample	Sample Type/	Date/Time		Sample	Pre-		Condition on	Disposal
Į	Number	Description	Collected	Туре	Volume	servative		Receipt	Record
3,	SU0008	Snap(N800, W100)-SS- SU0008-XRF	8/8/05 9:29	4 oz CWM	4 oz	Cool 4 deg C	TAL Metals by 6010B/7000		
	- LAST	LINE OF	- C	ع ر	•				
						:			
				•					
				<u> </u>	10	7.0	5		
				J.J.	MT 6	18-0			
							;		
	1002			22000					
	20								

APPENDIX C SUMMARY OF VALIDATED ANALYTICAL DATA

Summary of Validated Analytical Data AWWSB Tank Sites at Baby Bains Gap Road Ranges Fort McClellan, Alabama

(Page 1 of 2)

Sample	BG(NW8		V300)	BG(NW2		V200)	BG(NW6		V400)	BG(NW3				
1)	ple No.		SU0001 16-Aug-05 0 - 0.5		SU0002 17-Aug-05		SU0003 15-Aug-05			SU0004 15-Aug-05				
-	ole Date													
Sample I	Sample Depth (feet)						- 0.5		0 - 0.5			0 - 0.5		
	Parameter	Units	Result	Qual	VQual	Result		VQual	Result		VQual	Result	 	VQual
	Aluminum	mg/kg	8850		J	5700		J	6650		J	5180		J
	Antimony	mg/kg	13.1	U	UJ	12.9		UJ	11.8	U	UJ	13.2	U	UJ
	Arsenic	mg/kg	2.39			1.13	J	В	1.94			2.02		
	Barium	mg/kg	317			257			163			78.5		
	Beryllium	mg/kg	0.826	J	J	0.425	J	J	0.655		J	0.428		J
	Cadmium	mg/kg	0.187	J	J	0.21	J	J	0.132		J	0.143	 	J
	Calcium	mg/kg	1800			908			108	J	J	650	<u> </u>	
	Chromium	mg/kg	7.01			5.91			8.2			5.41		
	Cobalt	mg/kg	6.34			1.38	J	J	9.04			9.59		
METALS	Copper	mg/kg	10.2			10.9			8.28			5.07	<u> </u>	
(SW846 Methods	Iron	mg/kg	9030			5930			9160			7200		
6010B/7471A)	Lead	mg/kg	82.6			59.7			36.5			24.8		
00100/7471A)	Magnesium	mg/kg	759			664			501			660	ļ	
	Manganese	mg/kg	1030			48.4			201			417	<u> </u>	
	Mercury	mg/kg	0.131			0.154			0.0492	J	J	0.0621	J	J
	Nickel	mg/kg	7.82			4.22			6.48			6.36	L	
	Potassium	mg/kg	640	J	J	408	ا	J	499	J	J	448	J	J
	Selenium	mg/kg	1.31	ح	U	0.905	J	J	0.904	J	В	0.849	J	В
	Silver	mg/kg	2.61	U	U	2.58	U	U	2.35	U	U	2.63	U	U
	Sodium	mg/kg	41.4	J	J	33.5	J	J	40.7	J	J	37.8	J	J
	Thallium	mg/kg	2.92		В	3.04	L	В	3.87		В	3.57		В
	Vanadium	mg/kg	11.1			9.58			11			10		
	Zinc	mg/kg	56.4		J	32.8		J	36.1		J	29.3	<u> </u>	J

Summary of Validated Analytical Data AWWSB Tank Sites at Baby Bains Gap Road Ranges Fort McClellan, Alabama

(Page 2 of 2)

Sample Location Sample No.			SNAP(N500,W300) SU0005			SNAP(N500,W300) SU0006			SNAP(N100,W200) SU0007			SNAP(N800,W100) SU0008		
Sample Date			8-Aug-05			8-Aug-05			11-Aug-05			8-Aug-05		
Sample Depth (feet)			0 - 0.5			0 - 0.5			0 - 0.5			0 - 0.5		
METALS (SW846 Methods 6010B/7471A)	Parameter	Units	Result	Qual	VQual	Result	Qual	VQual	Result		VQual	Result		VQual
	Aluminum	mg/kg	11300		J	10200		J	4910		J	11600		J
	Antimony	mg/kg	12	U	UJ	12	U	UJ	13.2	U	UJ	11.7	U	UJ
	Arsenic	mg/kg	3.01			2.32			1.78			2.1		
	Barium	mg/kg	78.6			76			32.5			80.3		
	Beryllium	mg/kg	0.638	J	J	0.557	J	J	1.32		U	0.589		J
	Cadmium	mg/kg	1.2	U	U	1.2	U	U	1.32	U	U	1.17	U	U
	Calcium	mg/kg	260			303			1060			891		
	Chromium	mg/kg	13.3			14.6			19.2			13.4		
	Cobalt	mg/kg	7.73			7.55			2.7			8.47		
	Copper	mg/kg	7.34			7.28			6.62			8.49		
	Iron	mg/kg	10200			9660			8580			16100		
	Lead	mg/kg	81.8			84.5			24.2			22.6		
	Magnesium	mg/kg	325			293			246			505	<u> </u>	
	Manganese	mg/kg	1210			1180			181			534		
	Mercury	mg/kg	0.053	J	J ·	0.0636	J	J	0.0572		J	0.0695		J
	Nickel	mg/kg	6.03			5.4			2.62	J	J	7.74		
	Potassium	mg/kg	255	J	J	234	J	J	165		J	474		J
	Selenium	mg/kg	1.2	U	U	0.674	J	В	1.32	U	U	1.17		U
	Silver	mg/kg	2.39	Ú	U	2.39	U	U	2.64	U	U	2.34	U	U
	Sodium	mg/kg	23.4	J	J	30.2		J	17.7		В	21		J
	Thallium	mg/kg	2.22	J	В	2.75		В	4.05		В	7.15		
	Vanadium	mg/kg	19.8			18.8			13			22.7		
	Zinc	mg/kg	25.6		J	24.7		J	29.6		J	29.6		J

B - Constituent also detected in method blank sample.

mg/kg - milligrams per kilogram.

U - Constituent not detected above reporting limit listed.

Qual - Laboratory data qualifier.

VQual - Validation data qualifier.

J - Estimated value.

Response to ADEM Comments on the Site Investigation Report for AWWSB Tank Sites Near Baby Bains Gap Road Ranges Fort McClellan, Alabama (dated October 6, 2005)

Comments from Stephen A. Cobb, Chief, Hazardous Waste Branch, Land Division, dated February 6, 2006.

General Comments

The Alabama Department of Environmental Management (ADEM or the Department) has reviewed Fort McClellan's *Site Investigation for AWWSB Tank Sites*. The Army conducted this investigation in order to facilitate transfer of these properties to the Joint Powers Authority (JPA).

The Department concurs with the overall content of the document. However, ADEM requests clarification on two lead sample results at the Snap Lane Tank Site. On Page 5 of the text, the table indicates the lab lead result at the N100,W200 sample location was 84.5 mg/kg. The same value is presented in Table 4, but listed as Sample Number SU0007. However, in Appendix C - Summary of Validated Analytical Data, a different value for SU0007, 24.2 mg/kg, is listed. Please clarify or revise. Also, Sample Number SU0008 is listed in Appendix C as 22.6 mg/kg, but in Table 4 as 24.2 mg/kg. Please clarify or revise.

Response: The lead concentrations presented in Appendix C are correct in both cases. The text and tables were corrected to match the data presented in Appendix C.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4 ATLANTA FEDERAL CENTER 61 FORSYTH STREET ATLANTA, GEORGIA 30303-8960

November 3, 2005

EMAIL & US MAIL

4WD-FFB

Ron Levy BRAC Environmental Coordinator U.S. Army Transition Force, Fort McClellan P.O. Box 5022 Anniston, AL 36205-5000

SUBJ: SI Report for AWWSB Tank Sites Near Baby Bains Gap Road Ranges Fort McClellan

Dear Mr. Levy:

The Environmental Protection Agency (EPA) has reviewed the subject document and agrees with it as written. Therefore, EPA approves the subject document. If you have any questions, please call me at (404) 562-8549.

Sincerely,

Doyle T/Brittain

Senior Remedial Project Manager

cc: Lisa Holstein, Ft. McClellan
Michael Kelly, US Army AEC
Shana Decker, ADEM
Brandi Little, ADEM
Lee Coker, USA/COE
Steve Moran, Shaw Environmental
Daniel Copeland, CEHNC-OE-DC
Bernie Case, ALANG
Miki Schneider, JPA
Wayne Sartwell, ALANG
Pete Tuttle, USF&WS